Publications

2024

Antarctic meteorites threatened by climate warming

Tollenaar, V., Zekollari, H., Kittel, C. et al.
(2024) Nature Climate Change, 14, 340–343, https://doi.org/10.1038/s41558-024-01954-y 

Towards seamless environmental prediction – development of Pan-Eurasian EXperiment (PEEX) modelling platform

Mahura, A., Baklanov, A., Makkonen, R., Boy, M., Petäjä, T., et al.
(2024) Big Earth Data, 1–42. https://doi.org/10.1080/20964471.2024.2325019

Contribution of satellite sea surface salinity to the estimation of liquid freshwater content in the Beaufort Sea

Umbert, M., De Andrés, E., Sánchez, M., Gabarró, C., Hoareau, N., González-Gambau, V., García-Espriu, A., Olmedo, E., Raj, R. P., Xie, J., and Catany, R.
(2024) Ocean Science, 20, 279–291. https://doi.org/10.5194/os-20-279-2024 

Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model

Niehaus, H., Istomina, L., Nicolaus, M., Tao, R., Malinka, A., Zege, E., Spreen, G..
(2024) The Cryosphere, 18, 933–956. https://doi.org/10.5194/tc-18-933-2024

Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models

Blichner, S.M., Yli-Juuti, T., Mielonen, T. et al.
(2024) Nat Commun 15, 969. https://doi.org/10.1038/s41467-024-45001-y 

A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone

Womack, A., Alberello, A., de Vos, M., Toffoli, A., Verrinder, R., Vichi, M.
(2024) The Cryosphere 18, 205–229. https://doi.org/10.5194/tc-18-205-2024 

Polar Aerosol Atmospheric Rivers: Detection, Characteristics, and Potential Applications

Lapere Rémy, Jennie L. Thomas, Vincent Favier, Hélène Angot, Julia Asplund, Annica M. L. Ekman, Louis Marelle, Jean-Christophe Raut, Anderson Da Silva, Jonathan D. Wille, Paul Zieger
(2024) Journal of Geophysical Research: Atmospheres, 129 (2), e2023JD039606. https://doi.org/10.1029/2023JD039606    

Winter Arctic Sea Ice Surface Form Drag During 1999-2021: Satellite Retrieval and Spatiotemporal Variability

Zhang, Z., Hui, F., Shokr, M., Granskog, M. A., Cheng, B., Vihma, T., & Cheng, X.
(2024) IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3347694  
Preprint available here

Inter-comparison of melt pond products from optical satellite imagery

Lee, S., Stroeve, J., Webster, M., Fuchs, N., Perovich, D. K.
(2024) Remote Sensing of Environment, 301, 113920. https://doi.org/10.1016/j.rse.2023.113920 

2023

Rafting of Growing Antarctic Sea Ice Enhances In-Ice Biogeochemical Activity in Winter

Audh, R.R., Fawcett, S.E., Johnson, S., Rampai, T., Vichi, M.
(2023) Journal of Geophysical Research: Oceans 128, e2023JC019925. https://doi.org/10.1029/2023JC019925

The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design


Swart, N. C., Martin, T., Beadling, R., Chen, J.-J., Danek, C., England, M. H., Farneti, R., Griffies, S. M., Hattermann, T., Hauck, J., Haumann, F. A., Jüling, A., Li, Q., Marshall, J., Muilwijk, M., Pauling, A. G., Purich, A., Smith, I. J., and Thomas, M.

(2023) Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023 

Reduced deep convection  and bottom water formation due to Antarctic meltwater in a multi-model ensemble

 
Chen, J.-J., Swart, N. C., Beadling, R., Cheng, X., Hattermann, T., Jüling, A., Li, Q., Marshall, J., Martin, T., Muilwijk, M., Pauling, A. G., Purich, A., Smith, I. J., and Thomas, M. 

(2023) Geophysical Research Letters, 50, e2023GL106492. https://doi.org/10.1029/2023GL106492  

Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere

Kulmala, M., Lintunen, A., Lappalainen, H., Virtanen, A., Yan, C., Ezhova, E., Nieminen, T., Riipinen, I., Makkonen, R., Tamminen, J., Sundström, A.-M., Arola, A., Hansel, A., Lehtinen, K., Vesala, T., Petäjä, T., Bäck, J., Kokkonen, T., and Kerminen, V.-M.
(2023) Atmospheric Chemistry and Physics, 23, 14949–14971. https://doi.org/10.5194/acp-23-14949-2023 

Spatially heterogeneous effect of climate warming on the Arctic land ice


Maure, D., Kittel, C., Lambin, C., Delhasse, A., and Fettweis, X.
(2023) The Cryosphere, 17, 4645–4659. https://doi.org/10.5194/tc-17-4645-2023 

Retrieval of snow depth on Arctic sea ice from surface-based, polarimetric, dual-frequency radar altimetry


Willatt, R., Stroeve, J. C., Nandan, V., Newman, T., Mallett, R., Hendricks, S., et al.
(2023) Geophysical Research Letters, 50, e2023GL104461. https://doi.org/10.1029/2023GL104461 

Arctic warming by abundant fine sea salt aerosols from blowing snow 

Gong, X., Zhang, J., Croft, B. et al.
(2023) Nature Geoscience 16, 768–774. https://doi.org/10.1038/s41561-023-01254-8 

The influence of variability on fire weather conditions in high latitude regions under present and future global warming


Lund, M.T., Nordling, K., Gjelsvik, A.B., Samset, B.H.
(2023) Environmental Research Communications 5 065016. https://doi.org/10.1088/2515-7620/acdfad 

Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC


Heutte, B., Bergner, N., Beck, I. et al. 

(2023) Scientific Data 10, 690. https://doi.org/10.1038/s41597-023-02586-1 

Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice


Nandan, V., Willatt, R., Mallett, R. et al

(2023) The Cryosphere 17(6), 2211–2229. https://doi.org/10.5194/tc-17-2211-2023 

From Winter to Late Summer in the Northwestern Barents Sea Shelf: Impacts of Seasonal Progression of Sea Ice and Upper Ocean on Nutrient and Phytoplankton Dynamics


Koenig, Z., Muilwijk, M., Sandven, H., Lundesgaard, Ø., Assmy, P., Lind, S., Assmann, K. M., Chierici, M., Fransson, A., Gerland, S., Jones, E., H. H. Renner, A., & Granskog, M. A. 

(2023) Progress in Oceanography. https://doi.org/10.1016/j.pocean.2023.103174 

Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys


Salganik, E., Lange, B. A., Katlein, C., Matero, I., Anhaus, P., Muilwijk, M., Høyland, K. V, & Granskog, M. A. 

(2023) The Cryosphere, 17(11), 4873–4887. https://doi.org/10.5194/tc-17-4873-2023 

Atmospheric nanoparticle growth


Stolzenburg, D., Cai, R., Blichner, S. M., Kontkanen, J., Zhou, P., Makkonen, R., Kerminen, V-M., Kulmala, M., Riipinen, I., Kangasluom. J. 

(2023). Rev. Mod. Phys. 95, 045002. https://doi.org/10.1103/RevModPhys.95.045002 

Polar oceans and sea ice in a changing climate


Willis, MD, Lannuzel, D, Else, B, Angot, H, Campbell, K, Crabeck, O, Delille, B, Hayashida, H, Lizotte, M, Loose, B, Meiners, KM, Miller, L, Moreau, S, Nomura, D, Prytherch, J, Schmale, J, Steiner, N, Tedesco, L, Thomas, J. 

(2023) Elementa: Science of the Anthropocene 11(1). https://doi.org/10.1525/elementa.2023.00056 

Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic

Pereira Freitas, G., Adachi, K., Conen, F., Heslin-Rees, D., Krejci, R., Tobo, Y., Yttri, K.E., Zieger, P.
(2023) Nat Commun 14, 5997. https://doi.org/10.1038/s41467-023-41696-7 

New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data


Mchedlishvili, A., Lüpkes, C., Petty, A., Tsamados, M., and Spreen, G.

The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023

Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice


Lauber, J., Hattermann, T., de Steur, L. et al. 

(2023) Nat. Geosci. https://doi.org/10.1038/s41561-023-01273-5 

Zooplankton dilemma in the twilight


Tedesco, L. 

(2023) Nat. Clim. Chang. https://doi.org/10.1038/s41558-023-01786-2 

High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols


Tang, J., Zhou, P., Miller, P.A., Schurgers, G., Gustafson, A., Makkonen, R., Fu, Y.H., Rinnan, R. 

(2023)  npj Clim Atmos Sci 6, 147. https://doi.org/10.1038/s41612-023-00463-7 

Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features


Smith, MM, Angot, H, Chamberlain, EJ, Droste, ES, Karam, S, Muilwijk, M, Webb, AL, Archer, SD, Beck, I, Blomquist, BW, Bowman, J, Boyer, M, Bozzato, D, Chierici, M, Creamean, J, D’Angelo, A, Delille, B, Fer, I, Fong, AA, Fransson, A, Fuchs, N, Gardner, J, Granskog, MA, Hoppe, CJM, Hoppema, M, Hoppmann, M, Mock, T, Muller, S, Müller, O, Nicolaus, M, Nomura, D, Petäjä, T, Salganik, E, Schmale, J, Schmidt, K, Schulz, K, Shupe, MD, Stefels, J, Thielke, L, Tippenhauer, S, Ulfsbo, A, van Leeuwe, M, Webster, M, Yoshimura, M, Zhan, L. 

(2023) Elementa: Science of the Anthropocene 11(1). DOI: https://doi.org/10.1525/elementa.2023.00025 

Black carbon scavenging by low-level Arctic clouds


Zieger, P., Heslin-Rees, D., Karlsson, L. et al.  

(2023) Nat Commun 14, 5488. https://doi.org/10.1038/s41467-023-41221-w 

Relevance of warm air intrusions for Arctic satellite sea ice concentration time series


Rostosky, P. and Spreen, G.

(2023) The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023 

Upper ocean warming and sea ice reduction in the East Greenland Current from 2003 to 2019


de Steur, L., Sumata, H., Divine, D.V., Granskog, M. & Pavlova O. 

(2023) Commun Earth Environ 4, 261. https://doi.org/10.1038/s43247-023-00913-3  

Seasonality and drivers of water column optical properties on the northwestern Barents Sea shelf


Sandven, H., Hamre, B., Petit, T., Röttgers, R., Liu, H., & Granskog, M. A. 

(2023) Progress in Oceanography, 103076. https://authors.elsevier.com/c/1hUegI7ECy5je 

Snow Loss Into Leads in Arctic Sea Ice: Minimal in Typical Wintertime Conditions, but High During a Warm and Windy Snowfall Event


Clemens‐Sewall, D., Polashenski, C., Frey, M. M., Cox, C. J., Granskog, M. A., Macfarlane, A. R., Fons, S. W., Schmale, J., Hutchings, J. K., von Albedyll, L., Arndt, S., Schneebeli, M., & Perovich, D. 

(2023) Geophysical Research Letters, 50(12), e2023GL102816. https://doi.org/10.1029/2023GL102816  

Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition


Salganik, E., Lange, B. A., Itkin, P., Divine, D., Katlein, C., Nicolaus, M., Hoppmann, M., Neckel, N., Ricker, R., Høyland, K. V., & Granskog, M. A. 

(2023) Elementa: Science of the Anthropocene, 11(1). https://doi.org/10.1525/elementa.2023.00008 

A Review of Arctic–Subarctic Ocean Linkages: Past Changes, Mechanisms, and Future Projections


Wang, Q., Shu, Q., Wang, S., Beszczynska-Moeller, A., Danilov, S., de Steur, L., Haine, T. W. N., Karcher, M., Lee, C. M., Myers, P. G., Polyakov, I. V., Provost, C., Skagseth, Ø., Spreen, G. and Woodgate, R. 

(2023) Ocean-Land-Atmos Res. 2;0013. https://doi.org/10.34133/olar.0013 

Rapidly evolving aerosol emissions are a dangerous omission from near-term climate risk assessments


Persad, G., Samset, B. H., Wilcox, J. L., Allen, R. J., Bollasina, M. A., Booth, B. B. B., Bonfils, C., Crocker, T., Joshi, M., T-Lund, M., Marvel, K., Merikanto, J., Nordling, K. et al. 

(2023) Environ. Res.: Climate 2. https://doi.org/10.1088/2752-5295/acd6af      

Physical and morphological properties of first-year Antarctic sea ice in the spring marginal ice zone of the Atlantic-Indian sector 


Johnson S, Audh RR, de Jager W, Matlakala B, Vichi M, Womack A, Rampai T

(2023) Journal of Glaciology 1–14. https://doi.org/10.1017/jog.2023.21 

Modelling wintertime sea-spray aerosols under Arctic haze conditions


Ioannidis, E., Law, K. S., Raut, J.-C., Marelle, L., Onishi, T., Kirpes, R. M., Upchurch, L. M., Tuch, T., Wiedensohler, A., Massling, A., Skov, H., Quinn, P. K., and Pratt, K. A. 

(2023) Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023 

A seasonal analysis of aerosol NO3 sources and NOx oxidation pathways in the Southern Ocean marine boundary layer


Burger, J. M., Joyce, E., Hastings, M. G., Spence, K. A. M., and Altieri, K. E. 

(2023) Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023.

Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring


Ahmed, S., Thomas, J.L., Angot, H., Dommergue, A., Archer, S.D., Bariteau, L., Beck, I., Benavent, N., Blechschmidt, A-M., Blomquist, B., Boyer, M., Christensen, J.H., Dahlke, S., Dastoor, A., Helmig, D., Howard, D., Jacobi, H-W., Jokinen, T., Lapere, R,. Laurila, T., Quéléver, L.L.J., Richter, A., Ryjkov, A., Mahajan, A.S., Marelle, L., Pfaffhuber, K.A., Posman, K., Rinke, A., Saiz-Lopez, A., Schmale, J., Skov, H., Steffen, A., Stupple, G., Stutz, J., Travnikov, O., Zilker, B. 

(2023) Elementa: Science of the Anthropocene 11(1), https://doi.org/10.1525/elementa.2022.00129

On the turbulent heat fluxes: A comparison among satellite-based estimates, atmospheric reanalyses, and in-situ observations during the winter climate over Arctic sea ice


Zhang, Z-L, Hui, F-M., Vihma, T, Granskog, M.A., Cheng, B., Chen, Z-Q., Cheng X.. 

(2023) Advances in Climate Change Research, ISSN 1674-9278, https://doi.org/10.1016/j.accre.2023.04.004 

Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition


Pithan, F., Athanase, M., Dahlke, S., Sánchez-Benítez, A., Shupe, M. D., Sledd, A., Streffing, J., Svensson, G., and Jung, T. 

(2023) Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023 

The Deep Arctic Ocean and Fram Strait in CMIP6 Models


Heuzé, C., H. Zanowski, S. Karam, and M. Muilwijk

(2023) J. Climate, 36, 2551–2584, https://doi.org/10.1175/JCLI-D-22-0194.1

Regime shift in Arctic Ocean sea ice thickness


Sumata, H., de Steur, L., Divine, D.V., Granskog, M.A. & Gerland, S. 

(2023) Nature 615, 443–449. https://doi.org/10.1038/s41586-022-05686-x 

Simultaneous Optimization of 20 Key Parameters of the Integrated Forecasting System of ECMWF Using OpenIFS: Part I (Effect on Deterministic Forecasts)


Tuppi, L., M. Ekblom, P. Ollinaho, and H. Järvinen 

(2023) . Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-22-0209.1 [in press].

Widespread detection of chlorine oxyacids in the Arctic atmosphere


Tham, Y.J., Sarnela, N., Iyer, S. et al. 

(2023) Nature Communications, 14, 1769. https://doi.org/10.1038/s41467-023-37387-y 

The representation of sea salt aerosols and their role in polar climate within CMIP6


Lapere, R., Thomas, J. L., Marelle, L., Ekman, A. M. L., Frey, M. M., Lund, M. T., et al. 

(2023) Journal of Geophysical Research: Atmospheres, 128, e2022JD038235. https://doi.org/10.1029/2022JD038235 

Divergence in Climate Model Projections of Future Arctic Atlantification


Muilwijk, M., A. Nummelin, C. Heuzé, I. V. Polyakov, H. Zanowski, and L. H. Smedsrud. 

(2023) J. Climate, 36, 1727–1748, https://doi.org/10.1175/JCLI-D-22-0349.1

Filter Likelihood as an Observation-Based Verification Metric in Ensemble Forecasting


Ekblom, M., Tuppi, L., Räty, O., Ollinaho, P., Laine, M. and Järvinen, H., 2023. 

Tellus A: Dynamic Meteorology and Oceanography, 75(1), pp.69–87. DOI: http://doi.org/10.16993/tellusa.96 

Impact of sea ice transport on Beaufort Gyre liquid freshwater content


Cornish, S.B., Muilwijk, M., Scott, J.R. et al. 

(2023) Clim Dyn. https://doi.org/10.1007/s00382-022-06615-4 

First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data


Melsheimer, C., Spreen, G., Ye, Y., and Shokr, M. 

(2023) The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023 

Parametrization of Eddy Mass Transport in the Arctic Seas Based on the Sensitivity Analysis of Large-Scale Flows


Platov, G., Iakshina, D., and Golubeva, E. 

(2023) Water 15(3):472. https://doi.org/10.3390/w15030472 

2022

Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century


Jourdain, N. C., Mathiot, P., Burgard, C., Caillet, J., & Kittel, C. 

(2022) Geophysical Research Letters, 49, e2022GL100629. https://doi.org/10.1029/2022GL100629 

Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)


Stroeve, J., Nandan, V., Willatt, R., Dadic, R., Rostosky, P., Gallagher, M., Mallett, R., Barrett, A., Hendricks, S., Tonboe, R., McCrystall, M., Serreze, M., Thielke, L., Spreen, G., Newman, T., Yackel, J., Ricker, R., Tsamados, M., Macfarlane, A., Hannula, H.-R., and Schneebeli, M. 

(2022) The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022 

Variability in Antarctic surface climatology across regional climate models and reanalysis datasets


Carter, J., Leeson, A., Orr, A., Kittel, C., and van Wessem, J. M. 

(2022) The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022 

An indicator of sea ice variability for the Antarctic marginal ice zone


Vichi, M. 

(2022) The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022 

First results of the ARIEL L-band radiometer on the MOSAiC Arctic Expedition during the late summer and autumn period


Gabarró, C., Fabregat, P., Hernández-Macià, F., Jove, R., Salvador, J. et al. 

(2022) Elementa: Science of the Anthropocene, 10 (1), 00031. https://doi.org/10.1525/elementa.2022.00031 

Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates


Boy, M., Zhou, P., Kurtén, T. et al. 

(2022) npj Clim Atmos Sci 5, 72. https://doi.org/10.1038/s41612-022-00292-0 

Mapping the dependence of black carbon radiative forcing on emission region and season


Räisänen, P., Merikanto, J., Makkonen, R., Savolahti, M., Kirkevåg, A., Sand, M., Seland, Ø., and Partanen, A.-I. 

(2022) Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022 

An improved radiative forcing scheme for better representation of Arctic under-ice blooms


Gao, Y., Zhang, Y., Chai, F., Granskog, M. A., Duarte, P. & Assmy, P. 

(2022) Ocean Modelling, 177, 102075, https://doi.org/10.1016/j.ocemod.2022.102075 

Clouds drive differences in future surface melt over the Antarctic ice shelves


Kittel, C., Amory, C., Hofer, S., Agosta, C., Jourdain, N. C., Gilbert, E., Le Toumelin, L., Vignon, É., Gallée, H., and Fettweis, X.

(2022) The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022

Effects of ocean mesoscale eddies on atmosphere–sea ice–ocean interactions off Adélie Land, East Antarctica


Huot, PV., Kittel, C., Fichefet, T. et al. 

(2022) Clim Dyn 59, 41–60. https://doi.org/10.1007/s00382-021-06115-x 

Implementation and evaluation of open boundary conditions for sea ice in a regional coupled ocean (ROMS) and sea ice (CICE) modeling system


Duarte, P., Brændshøi, J., Shcherbin, D., Barras, P., Albretsen, J., Gusdal, Y., Szapiro, N., Martinsen, A., Samuelsen, A., Wang, K., and Debernard, J. B. (2022) Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022.

The role of snow in controlling halogen chemistry and boundary layer oxidation during Arctic spring: A 1D modeling case study


Ahmed, S., Thomas, J. L., Tuite, K., Stutz, J., Flocke, F., Orlando, J. J., et al. 

(2022) Journal of Geophysical Research: Atmospheres, 127, e2021JD036140. https://doi.org/10.1029/2021JD036140 

The Antarctic Marginal Ice Zone and Pack Ice Area in CMEMS GREP Ensemble Reanalysis Product


Iovino, D., Selivanova, J., Masina, S. & Cipollone, A. 

(2022) Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.745274