Publications
2024
Trends and Projections in Climate-Related Stressors Impacting Arctic Marine Ecosystems—A CMIP6 Model Analysis
Steiner, N. S., Reader, C. M.
(2024): Journal of Geophysical Research: Oceans, 129, e2024JC020970. https://doi.org/10.1029/2024JC020970
CMIP6 Models Underestimate Arctic Sea Ice Loss during the Early Twentieth-Century Warming, despite Simulating Large Low-Frequency Sea Ice Variability
Bianco, E., E. Blanchard-Wrigglesworth, S. Materia, P. Ruggieri, D. Iovino, and S. Masina
(2024): J. Climate, 37, 6305–6321, https://doi.org/10.1175/JCLI-D-23-0647.1
Assessing the representation of Arctic sea ice and the marginal ice zone in ocean–sea ice reanalyses
Cocetta, F., Zampieri, L., Selivanova, J., and Iovino, D.
(2024)The Cryosphere, 18, 4687–4702, https://doi.org/10.5194/tc-18-4687-2024
Estimation of Antarctic sea ice thickness through observation of wave attenuation
De Santi, F., Vichi, M., Alberello, A.
(2024) Ocean modelling, Vol.191, 102421, https://doi.org/10.1016/j.ocemod.2024.102421
Strong regional trends in extreme weather over the next two decades under high - and low - emissions pathways
Carley E. Iles, Bjørn H. Samset, Marit Sandstad, Nina Schuhen, Laura J. Wilcox & Marianne T. Lund
(2024) Nature Geoscience, 17, 845-850, https://doi.org/10.1038/s41561-024-01511-4
Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up
Muilwijk, M., Hattermann, T., Martin, T., & Granskog, M.A.
(2024) Nat Commun 15, 6889. https://doi.org/10.1038/s41467-024-50874-0
Co-located OLCI optical imagery and SAR altimetry from Sentinel-3 for enhanced Arctic spring sea ice surface classification
Chen, W., Tsamados, M., Willatt, R., Takao, S., Brockley, D., de Rijke-Thomas, C., Francis, A., Johnson, T., Landy, J., Lawrence, IR., Lee, S., Nasrollahi Shirazi, D., Liu, W., Nelson, C., Stroeve, JC.., Hirata, L. and Deisenroth, M.P.
(2024) Front. Remote Sens. 5:1401653. https://doi.org/10.3389/frsen.2024.1401653
Limited Benefits of Increased Spatial Resolution for Sea Ice in HighResMIP Simulations
Selivanova, J., Iovino, D., Vichi, M
(2024) Geophysical Research Letters, Vol. 51, Issue 14. https://doi.org/10.1029/2023GL107969
The Eurasian Arctic Ocean along the MOSAiC drift in 2019–2020: An interdisciplinary perspective on physical properties and processes
Kirstin Schulz, Zoe Koenig, Morven Muilwijk, Dorothea Bauch, Clara J. M. Hoppe, Elise S. Droste, Mario Hoppmann, Emelia J. Chamberlain, Georgi Laukert, Tim Stanton, Alejandra Quintanilla-Zurita, Ilker Fer, Céline Heuzé, Salar Karam, Sebastian Mieruch-Schnülle, Till M. Baumann, Myriel Vredenborg, Sandra Tippenhauer, Mats A. Granskog
(2024)Elementa: Science of the Anthropocene 12(1). DOI: https://doi.org/10.1525/elementa.2023.00114
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
(2024) The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024
Modeling the Winter Heat Conduction Through the Sea Ice System During MOSAiC
Lorenzo Zampieri, David Clemens-Sewall, Anne Sledd, Nils Hutter, Marika Holland
(2024) Geophysical Research Letters, Vol. 51, Issue 8. https://doi.org/10.1029/2023GL106760
A new implementation of FLEXPART with Enviro-HIRLAM meteorological input, and a case study during a heavy air pollution event
Benjamin Foreback, Alexander Mahura, Petri Clusius, Carlton Xavier, Metin Baykara, Putian Zhou, Tuomo Nieminen, Victoria Sinclair, Veli-Matti Kerminen, Tom V. Kokkonen, Simo Hakala, Diego Aliaga, Risto Makkonen, Alexander Baklanov, Roman Nuterman, Men Xia, Chenjie Hua, Yongchun Liu, Markku Kulmala, Pauli Paasonen & Michael Boy
(2024) Big Earth Data, 8(2), 397–434. https://doi.org/10.1080/20964471.2024.2316320
Synoptic-Scale Extreme Variability of Winter Antarctic Sea-Ice Concentration and Its Link to Southern Ocean Extratropical Cyclones
Ehlke Hepworth, Gabriele Messori, Marcello Vichi
(2024) JGR Oceans, Vol.129, Issue 6, https://doi.org/10.1029/2023JC019825
Observed Seasonal Evolution of the Antarctic Slope Current System off the Coast of Dronning Maud Land, East Antarctica
Julius Lauber, Laura de Steur, Tore Hattermann, Elin Darelius
(2024) JGR Oceans, Vol.129, Issue 4, https://doi.org/10.1029/2023JC020540
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
(2024) Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024
Cross-border dimensions of Arctic climate change impacts and implications for Europe
Mosoni, C., Hildén, M., Fronzek, S., Reyer, C. P. O., & Carter, T. R.
(2024) WIREs Climate Change, e905. https://doi.org/10.1002/wcc.905
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
(2024) The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024
Ice-free period too long for Southern and Western Hudson Bay polar bear populations if global warming exceeds 1.6 to 2.6 °C
Stroeve, J., Crawford, A., Ferguson, S. et al.
(2024) Commun Earth Environ 5, 296. https://doi.org/10.1038/s43247-024-01430-7
Environmental controls and phenology of sea ice algal growth in a future Arctic
Haddon, A, Farnole, P, Monahan, AH, Sou, T, Steiner, N.
(2024) Environmental controls and phenology of sea ice algal growth in a future Arctic. Elementa: Science of the Anthropocene 12(1). DOI: https://doi.org/10.1525/elementa.2023.00129
Evaluation and development of surface layer scheme representation of temperature inversions over boreal forests in Arctic wintertime conditions
Maillard, J., Raut, J.-C., and Ravetta, F.
(2024) Geosci. Model Dev., 17, 3303–3320, https://doi.org/10.5194/gmd-17-3303-2024
Mapping potential timing of ice algal blooms from satellite
Stroeve, J. C., Veyssiere, G., Nab, C., Light, B., Perovich, D., Laliberté, J., et al.
(2024) Geophysical Research Letters, 51, e2023GL106486. https://doi.org/10.1029/2023GL106486
Antarctic meteorites threatened by climate warming
Tollenaar, V., Zekollari, H., Kittel, C. et al.
(2024) Nature Climate Change, 14, 340–343, https://doi.org/10.1038/s41558-024-01954-y
Towards seamless environmental prediction – development of Pan-Eurasian EXperiment (PEEX) modelling platform
Mahura, A., Baklanov, A., Makkonen, R., Boy, M., Petäjä, T., et al.
(2024) Big Earth Data, 1–42. https://doi.org/10.1080/20964471.2024.2325019
Contribution of satellite sea surface salinity to the estimation of liquid freshwater content in the Beaufort Sea
Umbert, M., De Andrés, E., Sánchez, M., Gabarró, C., Hoareau, N., González-Gambau, V., García-Espriu, A., Olmedo, E., Raj, R. P., Xie, J., and Catany, R.
(2024) Ocean Science, 20, 279–291. https://doi.org/10.5194/os-20-279-2024
Uncertainties of Drag Coefficient Estimates Above Sea Ice from Field Data
Blein, S., Guemas, V., Brooks, I.M., Elvidge, A.D., and Renfrew I.A.
(2024) Boundary-Layer Meteorology 190, 11. https://doi.org/10.1007/s10546-023-00851-9
Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning
Cummins, D.P., Guemas, V., Blein, S., Brooks, I.M., Renfrew I.A., Elvidge, A.D., and Prytherch J.
(2024) Boundary-Layer Meteorology 190, 13 . https://doi.org/10.1007/s10546-023-00852-8
Surface Turbulent Fluxes From the MOSAiC Campaign Predicted by Machine Learning
Cummins D.P., Guemas V., Cox C.J., Gallaher M.R., Shupe M.D.
(2024) Geophysical Research Letters, 50 (23), e2023GL105698. https://doi.org/10.1029/2023GL105698
Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Niehaus, H., Istomina, L., Nicolaus, M., Tao, R., Malinka, A., Zege, E., Spreen, G..
(2024) The Cryosphere, 18, 933–956. https://doi.org/10.5194/tc-18-933-2024
Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models
Blichner, S.M., Yli-Juuti, T., Mielonen, T. et al.
(2024) Nat Commun 15, 969. https://doi.org/10.1038/s41467-024-45001-y
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Womack, A., Alberello, A., de Vos, M., Toffoli, A., Verrinder, R., Vichi, M.
(2024) The Cryosphere 18, 205–229. https://doi.org/10.5194/tc-18-205-2024
Polar Aerosol Atmospheric Rivers: Detection, Characteristics, and Potential Applications
Lapere Rémy, Jennie L. Thomas, Vincent Favier, Hélène Angot, Julia Asplund, Annica M. L. Ekman, Louis Marelle, Jean-Christophe Raut, Anderson Da Silva, Jonathan D. Wille, Paul Zieger
(2024) Journal of Geophysical Research: Atmospheres, 129 (2), e2023JD039606. https://doi.org/10.1029/2023JD039606
Winter Arctic Sea Ice Surface Form Drag During 1999-2021: Satellite Retrieval and Spatiotemporal Variability
Zhang, Z., Hui, F., Shokr, M., Granskog, M. A., Cheng, B., Vihma, T., & Cheng, X.
(2024) IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3347694
Preprint available here
Inter-comparison of melt pond products from optical satellite imagery
Lee, S., Stroeve, J., Webster, M., Fuchs, N., Perovich, D. K.
(2024) Remote Sensing of Environment, 301, 113920. https://doi.org/10.1016/j.rse.2023.113920
2023
Rafting of Growing Antarctic Sea Ice Enhances In-Ice Biogeochemical Activity in Winter
Audh, R.R., Fawcett, S.E., Johnson, S., Rampai, T., Vichi, M.
(2023) Journal of Geophysical Research: Oceans 128, e2023JC019925. https://doi.org/10.1029/2023JC019925
The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design
Swart, N. C., Martin, T., Beadling, R., Chen, J.-J., Danek, C., England, M. H., Farneti, R., Griffies, S. M., Hattermann, T., Hauck, J., Haumann, F. A., Jüling, A., Li, Q., Marshall, J., Muilwijk, M., Pauling, A. G., Purich, A., Smith, I. J., and Thomas, M.
(2023) Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023
Reduced deep convection and bottom water formation due to Antarctic meltwater in a multi-model ensemble
Chen, J.-J., Swart, N. C., Beadling, R., Cheng, X., Hattermann, T., Jüling, A., Li, Q., Marshall, J., Martin, T., Muilwijk, M., Pauling, A. G., Purich, A., Smith, I. J., and Thomas, M.
(2023) Geophysical Research Letters, 50, e2023GL106492. https://doi.org/10.1029/2023GL106492
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
Kulmala, M., Lintunen, A., Lappalainen, H., Virtanen, A., Yan, C., Ezhova, E., Nieminen, T., Riipinen, I., Makkonen, R., Tamminen, J., Sundström, A.-M., Arola, A., Hansel, A., Lehtinen, K., Vesala, T., Petäjä, T., Bäck, J., Kokkonen, T., and Kerminen, V.-M.
(2023) Atmospheric Chemistry and Physics, 23, 14949–14971. https://doi.org/10.5194/acp-23-14949-2023
Spatially heterogeneous effect of climate warming on the Arctic land ice
Maure, D., Kittel, C., Lambin, C., Delhasse, A., and Fettweis, X.
(2023) The Cryosphere, 17, 4645–4659. https://doi.org/10.5194/tc-17-4645-2023
Retrieval of snow depth on Arctic sea ice from surface-based, polarimetric, dual-frequency radar altimetry
Willatt, R., Stroeve, J. C., Nandan, V., Newman, T., Mallett, R., Hendricks, S., et al.
(2023) Geophysical Research Letters, 50, e2023GL104461. https://doi.org/10.1029/2023GL104461
Arctic warming by abundant fine sea salt aerosols from blowing snow
Gong, X., Zhang, J., Croft, B. et al.
(2023) Nature Geoscience 16, 768–774. https://doi.org/10.1038/s41561-023-01254-8
The influence of variability on fire weather conditions in high latitude regions under present and future global warming
Lund, M.T., Nordling, K., Gjelsvik, A.B., Samset, B.H.
(2023) Environmental Research Communications 5 065016. https://doi.org/10.1088/2515-7620/acdfad
Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC
Heutte, B., Bergner, N., Beck, I. et al.
(2023) Scientific Data 10, 690. https://doi.org/10.1038/s41597-023-02586-1
Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice
Nandan, V., Willatt, R., Mallett, R. et al.
(2023) The Cryosphere 17(6), 2211–2229. https://doi.org/10.5194/tc-17-2211-2023
From Winter to Late Summer in the Northwestern Barents Sea Shelf: Impacts of Seasonal Progression of Sea Ice and Upper Ocean on Nutrient and Phytoplankton Dynamics
Koenig, Z., Muilwijk, M., Sandven, H., Lundesgaard, Ø., Assmy, P., Lind, S., Assmann, K. M., Chierici, M., Fransson, A., Gerland, S., Jones, E., H. H. Renner, A., & Granskog, M. A.
(2023) Progress in Oceanography. https://doi.org/10.1016/j.pocean.2023.103174
Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys
Salganik, E., Lange, B. A., Katlein, C., Matero, I., Anhaus, P., Muilwijk, M., Høyland, K. V, & Granskog, M. A.
(2023) The Cryosphere, 17(11), 4873–4887. https://doi.org/10.5194/tc-17-4873-2023
Atmospheric nanoparticle growth
Stolzenburg, D., Cai, R., Blichner, S. M., Kontkanen, J., Zhou, P., Makkonen, R., Kerminen, V-M., Kulmala, M., Riipinen, I., Kangasluom. J.
(2023). Rev. Mod. Phys. 95, 045002. https://doi.org/10.1103/RevModPhys.95.045002
Polar oceans and sea ice in a changing climate
Willis, MD, Lannuzel, D, Else, B, Angot, H, Campbell, K, Crabeck, O, Delille, B, Hayashida, H, Lizotte, M, Loose, B, Meiners, KM, Miller, L, Moreau, S, Nomura, D, Prytherch, J, Schmale, J, Steiner, N, Tedesco, L, Thomas, J.
(2023) Elementa: Science of the Anthropocene 11(1). https://doi.org/10.1525/elementa.2023.00056
Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic
Pereira Freitas, G., Adachi, K., Conen, F., Heslin-Rees, D., Krejci, R., Tobo, Y., Yttri, K.E., Zieger, P.
(2023) Nat Commun 14, 5997. https://doi.org/10.1038/s41467-023-41696-7
Pereira Freitas, G., Adachi, K., Conen, F., Heslin-Rees, D., Krejci, R., Tobo, Y., Yttri, K.E., Zieger, P.
(2023) Nat Commun 14, 5997. https://doi.org/10.1038/s41467-023-41696-7
New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data
Mchedlishvili, A., Lüpkes, C., Petty, A., Tsamados, M., and Spreen, G.
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023,
Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice
Lauber, J., Hattermann, T., de Steur, L. et al.
(2023) Nat. Geosci. https://doi.org/10.1038/s41561-023-01273-5
Zooplankton dilemma in the twilight
Tedesco, L.
(2023) Nat. Clim. Chang. https://doi.org/10.1038/s41558-023-01786-2
High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols
Tang, J., Zhou, P., Miller, P.A., Schurgers, G., Gustafson, A., Makkonen, R., Fu, Y.H., Rinnan, R.
(2023) npj Clim Atmos Sci 6, 147. https://doi.org/10.1038/s41612-023-00463-7
Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features
Smith, MM, Angot, H, Chamberlain, EJ, Droste, ES, Karam, S, Muilwijk, M, Webb, AL, Archer, SD, Beck, I, Blomquist, BW, Bowman, J, Boyer, M, Bozzato, D, Chierici, M, Creamean, J, D’Angelo, A, Delille, B, Fer, I, Fong, AA, Fransson, A, Fuchs, N, Gardner, J, Granskog, MA, Hoppe, CJM, Hoppema, M, Hoppmann, M, Mock, T, Muller, S, Müller, O, Nicolaus, M, Nomura, D, Petäjä, T, Salganik, E, Schmale, J, Schmidt, K, Schulz, K, Shupe, MD, Stefels, J, Thielke, L, Tippenhauer, S, Ulfsbo, A, van Leeuwe, M, Webster, M, Yoshimura, M, Zhan, L.
(2023) Elementa: Science of the Anthropocene 11(1). DOI: https://doi.org/10.1525/elementa.2023.00025
Black carbon scavenging by low-level Arctic clouds
Zieger, P., Heslin-Rees, D., Karlsson, L. et al.
(2023) Nat Commun 14, 5488. https://doi.org/10.1038/s41467-023-41221-w
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Rostosky, P. and Spreen, G.
(2023) The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023
Upper ocean warming and sea ice reduction in the East Greenland Current from 2003 to 2019
de Steur, L., Sumata, H., Divine, D.V., Granskog, M. & Pavlova O.
(2023) Commun Earth Environ 4, 261. https://doi.org/10.1038/s43247-023-00913-3
Seasonality and drivers of water column optical properties on the northwestern Barents Sea shelf
Sandven, H., Hamre, B., Petit, T., Röttgers, R., Liu, H., & Granskog, M. A.
(2023) Progress in Oceanography, 103076. https://authors.elsevier.com/c/1hUegI7ECy5je
Snow Loss Into Leads in Arctic Sea Ice: Minimal in Typical Wintertime Conditions, but High During a Warm and Windy Snowfall Event
Clemens‐Sewall, D., Polashenski, C., Frey, M. M., Cox, C. J., Granskog, M. A., Macfarlane, A. R., Fons, S. W., Schmale, J., Hutchings, J. K., von Albedyll, L., Arndt, S., Schneebeli, M., & Perovich, D.
(2023) Geophysical Research Letters, 50(12), e2023GL102816. https://doi.org/10.1029/2023GL102816
Different mechanisms of Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition
Salganik, E., Lange, B. A., Itkin, P., Divine, D., Katlein, C., Nicolaus, M., Hoppmann, M., Neckel, N., Ricker, R., Høyland, K. V., & Granskog, M. A.
(2023) Elementa: Science of the Anthropocene, 11(1). https://doi.org/10.1525/elementa.2023.00008
A Review of Arctic–Subarctic Ocean Linkages: Past Changes, Mechanisms, and Future Projections
Wang, Q., Shu, Q., Wang, S., Beszczynska-Moeller, A., Danilov, S., de Steur, L., Haine, T. W. N., Karcher, M., Lee, C. M., Myers, P. G., Polyakov, I. V., Provost, C., Skagseth, Ø., Spreen, G. and Woodgate, R.
(2023) Ocean-Land-Atmos Res. 2;0013. https://doi.org/10.34133/olar.0013
Rapidly evolving aerosol emissions are a dangerous omission from near-term climate risk assessments
Persad, G., Samset, B. H., Wilcox, J. L., Allen, R. J., Bollasina, M. A., Booth, B. B. B., Bonfils, C., Crocker, T., Joshi, M., T-Lund, M., Marvel, K., Merikanto, J., Nordling, K. et al.
(2023) Environ. Res.: Climate 2. https://doi.org/10.1088/2752-5295/acd6af
Physical and morphological properties of first-year Antarctic sea ice in the spring marginal ice zone of the Atlantic-Indian sector
Johnson S, Audh RR, de Jager W, Matlakala B, Vichi M, Womack A, Rampai T.
(2023) Journal of Glaciology 1–14. https://doi.org/10.1017/jog.2023.21
Modelling wintertime sea-spray aerosols under Arctic haze conditions
Ioannidis, E., Law, K. S., Raut, J.-C., Marelle, L., Onishi, T., Kirpes, R. M., Upchurch, L. M., Tuch, T., Wiedensohler, A., Massling, A., Skov, H., Quinn, P. K., and Pratt, K. A.
(2023) Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023
A seasonal analysis of aerosol NO3− sources and NOx oxidation pathways in the Southern Ocean marine boundary layer
Burger, J. M., Joyce, E., Hastings, M. G., Spence, K. A. M., and Altieri, K. E.
(2023) Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023.
Modelling the coupled mercury-halogen-ozone cycle in the central Arctic during spring
Ahmed, S., Thomas, J.L., Angot, H., Dommergue, A., Archer, S.D., Bariteau, L., Beck, I., Benavent, N., Blechschmidt, A-M., Blomquist, B., Boyer, M., Christensen, J.H., Dahlke, S., Dastoor, A., Helmig, D., Howard, D., Jacobi, H-W., Jokinen, T., Lapere, R,. Laurila, T., Quéléver, L.L.J., Richter, A., Ryjkov, A., Mahajan, A.S., Marelle, L., Pfaffhuber, K.A., Posman, K., Rinke, A., Saiz-Lopez, A., Schmale, J., Skov, H., Steffen, A., Stupple, G., Stutz, J., Travnikov, O., Zilker, B.
(2023) Elementa: Science of the Anthropocene 11(1), https://doi.org/10.1525/elementa.2022.00129
On the turbulent heat fluxes: A comparison among satellite-based estimates, atmospheric reanalyses, and in-situ observations during the winter climate over Arctic sea ice
Zhang, Z-L, Hui, F-M., Vihma, T, Granskog, M.A., Cheng, B., Chen, Z-Q., Cheng X..
(2023) Advances in Climate Change Research, ISSN 1674-9278, https://doi.org/10.1016/j.accre.2023.04.004
Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition
Pithan, F., Athanase, M., Dahlke, S., Sánchez-Benítez, A., Shupe, M. D., Sledd, A., Streffing, J., Svensson, G., and Jung, T.
(2023) Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023
The Deep Arctic Ocean and Fram Strait in CMIP6 Models
Heuzé, C., H. Zanowski, S. Karam, and M. Muilwijk
(2023) J. Climate, 36, 2551–2584, https://doi.org/10.1175/JCLI-D-22-0194.1
Regime shift in Arctic Ocean sea ice thickness
Sumata, H., de Steur, L., Divine, D.V., Granskog, M.A. & Gerland, S.
(2023) Nature 615, 443–449. https://doi.org/10.1038/s41586-022-05686-x
Simultaneous Optimization of 20 Key Parameters of the Integrated Forecasting System of ECMWF Using OpenIFS: Part I (Effect on Deterministic Forecasts)
Tuppi, L., M. Ekblom, P. Ollinaho, and H. Järvinen
(2023) . Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-22-0209.1 [in press].
Widespread detection of chlorine oxyacids in the Arctic atmosphere
Tham, Y.J., Sarnela, N., Iyer, S. et al.
(2023) Nature Communications, 14, 1769. https://doi.org/10.1038/s41467-023-37387-y
The representation of sea salt aerosols and their role in polar climate within CMIP6
Lapere, R., Thomas, J. L., Marelle, L., Ekman, A. M. L., Frey, M. M., Lund, M. T., et al.
(2023) Journal of Geophysical Research: Atmospheres, 128, e2022JD038235. https://doi.org/10.1029/2022JD038235
Divergence in Climate Model Projections of Future Arctic Atlantification
Muilwijk, M., A. Nummelin, C. Heuzé, I. V. Polyakov, H. Zanowski, and L. H. Smedsrud.
(2023) J. Climate, 36, 1727–1748, https://doi.org/10.1175/JCLI-D-22-0349.1
Filter Likelihood as an Observation-Based Verification Metric in Ensemble Forecasting
Ekblom, M., Tuppi, L., Räty, O., Ollinaho, P., Laine, M. and Järvinen, H., 2023.
Tellus A: Dynamic Meteorology and Oceanography, 75(1), pp.69–87. DOI: http://doi.org/10.16993/tellusa.96
Impact of sea ice transport on Beaufort Gyre liquid freshwater content
Cornish, S.B., Muilwijk, M., Scott, J.R. et al.
(2023) Clim Dyn. https://doi.org/10.1007/s00382-022-06615-4
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Melsheimer, C., Spreen, G., Ye, Y., and Shokr, M.
(2023) The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023
Parametrization of Eddy Mass Transport in the Arctic Seas Based on the Sensitivity Analysis of Large-Scale Flows
Platov, G., Iakshina, D., and Golubeva, E.
(2023) Water 15(3):472. https://doi.org/10.3390/w15030472
2022
Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century
Jourdain, N. C., Mathiot, P., Burgard, C., Caillet, J., & Kittel, C.
(2022) Geophysical Research Letters, 49, e2022GL100629. https://doi.org/10.1029/2022GL100629
Rain on snow (ROS) understudied in sea ice remote sensing: a multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate)
Stroeve, J., Nandan, V., Willatt, R., Dadic, R., Rostosky, P., Gallagher, M., Mallett, R., Barrett, A., Hendricks, S., Tonboe, R., McCrystall, M., Serreze, M., Thielke, L., Spreen, G., Newman, T., Yackel, J., Ricker, R., Tsamados, M., Macfarlane, A., Hannula, H.-R., and Schneebeli, M.
(2022) The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022
Variability in Antarctic surface climatology across regional climate models and reanalysis datasets
Carter, J., Leeson, A., Orr, A., Kittel, C., and van Wessem, J. M.
(2022) The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022
An indicator of sea ice variability for the Antarctic marginal ice zone
Vichi, M.
(2022) The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022
First results of the ARIEL L-band radiometer on the MOSAiC Arctic Expedition during the late summer and autumn period
Gabarró, C., Fabregat, P., Hernández-Macià, F., Jove, R., Salvador, J. et al.
(2022) Elementa: Science of the Anthropocene, 10 (1), 00031. https://doi.org/10.1525/elementa.2022.00031
Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates
Boy, M., Zhou, P., Kurtén, T. et al.
(2022) npj Clim Atmos Sci 5, 72. https://doi.org/10.1038/s41612-022-00292-0
Mapping the dependence of black carbon radiative forcing on emission region and season
Räisänen, P., Merikanto, J., Makkonen, R., Savolahti, M., Kirkevåg, A., Sand, M., Seland, Ø., and Partanen, A.-I.
(2022) Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022
An improved radiative forcing scheme for better representation of Arctic under-ice blooms
Gao, Y., Zhang, Y., Chai, F., Granskog, M. A., Duarte, P. & Assmy, P.
(2022) Ocean Modelling, 177, 102075, https://doi.org/10.1016/j.ocemod.2022.102075
Clouds drive differences in future surface melt over the Antarctic ice shelves
Kittel, C., Amory, C., Hofer, S., Agosta, C., Jourdain, N. C., Gilbert, E., Le Toumelin, L., Vignon, É., Gallée, H., and Fettweis, X.
(2022) The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022
Effects of ocean mesoscale eddies on atmosphere–sea ice–ocean interactions off Adélie Land, East Antarctica
Huot, PV., Kittel, C., Fichefet, T. et al.
(2022) Clim Dyn 59, 41–60. https://doi.org/10.1007/s00382-021-06115-x
Implementation and evaluation of open boundary conditions for sea ice in a regional coupled ocean (ROMS) and sea ice (CICE) modeling system
Duarte, P., Brændshøi, J., Shcherbin, D., Barras, P., Albretsen, J., Gusdal, Y., Szapiro, N., Martinsen, A., Samuelsen, A., Wang, K., and Debernard, J. B. (2022) Geosci. Model Dev., 15, 4373–4392, https://doi.org/10.5194/gmd-15-4373-2022.
The role of snow in controlling halogen chemistry and boundary layer oxidation during Arctic spring: A 1D modeling case study
Ahmed, S., Thomas, J. L., Tuite, K., Stutz, J., Flocke, F., Orlando, J. J., et al.
(2022) Journal of Geophysical Research: Atmospheres, 127, e2021JD036140. https://doi.org/10.1029/2021JD036140
The Antarctic Marginal Ice Zone and Pack Ice Area in CMEMS GREP Ensemble Reanalysis Product
Iovino, D., Selivanova, J., Masina, S. & Cipollone, A.
(2022) Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.745274